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1 Introduction slide 2

1.1 Background slide 3

Starting point

! We start with a concrete question, e.g.,

– Does the Higgs boson exist?

– Is fraud taking place at this factory?

– Are these two satellites likely to collide soon?

– Do lockdowns reduce Covid transmission?

! We aim

– to use data

– to provide evidence bearing on the question,

– to draw a conclusion or reach a decision to guide future actions.

! Here we mostly discuss how to express the evidence, but the choice and quality of the data, and
how they were obtained, affect the evidence and the clarity of any decision.

! The data typically display both structure and haphazard variation, so any conclusion reached is
uncertain, i.e., is an inference.
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Data

! Theoretical discussion generally takes observed data as given, but

– to get the data we may need to plan an investigation, perhaps design an experiment
largely controlled by the investigator — not considered here but often crucial to obtaining
strong data and hence secure conclusions; or

– to use data from an observational study (the investigator has little or no control over data
collection).

! In both cases the data used may be selected from those available, and especially if we have ‘found
data’ we must ask

– why am I seeing these data?

– what exactly was measured, and how?

– can the observations actually shed light on the problem?

– will using a function of the available data give more insight?

! For now we suppose these questions have satisfactory answers . . .
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Some statistical activities

! Conventionally divided into

– design of investigations — how do we get reliable data to answer a question efficiently and
securely?

– descriptive statistics/exploratory data analysis — how can we get insight into a specific
dataset?

– inference — what can we learn about the properties of a ‘population’ underlying the data?

– decision analysis — what is the optimal decision in a given situation?

to which we nowadays add

– machine learning — algorithms, generally complex and computationally demanding, often
used for prediction/decision-making.
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Descriptive statistics

! In principle concerns only the data available, mainly involving

– graphical summaries — histograms, boxplots, scatterplots, . . .

– numerical summaries — averages, variances, medians, . . .

! Some summaries presuppose the existence of ‘population’ quantities (e.g., a density).

! We use probability models to analyse the properties of these summaries (e.g., formulation of a
boxplot, ‘is that difference significant?’, . . . ).

! Even when we have ‘all the data’ (e.g., loyalty card transactions) we may want to ask ‘what if?’
questions, and these require further assumptions (e.g., temporal stability, future and current
customers are similar, . . . ).
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Statistical inference

! Use observed data to draw conclusions about a ‘population’ from which the data are assumed to
be drawn, or about future data.

! The ‘population’ and observed data are linked by concepts of probability.

! Two distinct roles of probability in statistical analysis:

– as a description of variation in data (‘aleatory probability’, ‘chance’), treating the observed
data y as an outcome of a random process/probability model, perhaps

◃ suggested by the context, or

◃ imposed by the investigator (via some sampling procedure);

– to formulate uncertainty (‘epistemic probability’) about the reality modelled in terms of the
random experiment, based on y.

! Most of the course concerns the formulation and expression of uncertainty.

! We first revise some concepts from probability and basic statistics.
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1.2 Probability Revision slide 9

Probability spaces

! Ordered triples (Ω,F ,P) consisting of

– a set Ω of elementary outcomes ω corresponding to distinct potential outcomes of a random
experiment;

– an event space F of subsets of Ω that satisfy (a) Ω ∈ F , (b) if A ∈ F , then Ac ∈ F , and (c)
if A1,A2, . . . ∈ F , then

⋃
Aj ∈ F ;

– a probability measure P : F → [0, 1] that satisfies (i) if A ∈ F , then 0 ≤ P(A) ≤ 1, (ii)
P(Ω) = 1, (iii) if A1,A2, . . . ∈ F satisfy Aj ∩Ak = ∅ for j ̸= k, then P(

⋃
Aj) =

∑
P(Aj).

! We call (Ω,F) a measure space and any A ∈ F an event (measurable set).

! From these we deduce

– the inclusion-exclusion formulae, and

– computation of probabilities in simple problems using combinatorial formulae.

! If P(B) > 0 we define conditional probabilities P(A | B) = P(A ∩ B)/P(B), and derive

– a new conditional probability distribution PB(A) = P(A | B) for A ∈ F ,

– the law of total probability,

– Bayes’ theorem, and

– the notion of independent events, for which P(A ∩ B) = P(A)P(B).
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Random variables

! Let (Ω,F ,P) be a probability space and (X ,G) a measurable space. A random function X from
Ω into X has the property that X−1(C) = {ω : X(ω) ∈ C} ∈ F for any C ∈ G, so
P(X ∈ C) = P{X−1(C)} is well-defined. Such a function is called measurable.

! If X = R or Rn we call X a random variable and there exists a cumulative distribution
function (CDF) F such that P{X ∈ (−∞, x1]× · · ·× (−∞, xn]} = F (x1, . . . , xn).

! A CDF increases from 0 when any of its arguments increases from −∞ to +∞.

! F can be written as a sum of (sub-)distributions Fac + Fdis + Fsing, where

– Fac is absolutely continuous, i.e., there exists a non-negative probability density function
(PDF) fac(x) = dFac(x)/dx,

– Fdis is discrete, i.e., its probability mass function (PMF) fdis(x) is positive only on a finite
or countable set S, and

– Fsing is singular, and can be ignored (look up ‘Cantor distribution’ if interested).

! We call X continuous or discrete respectively if Fdis or Fac is absent.

! If necessary we use Lebesgue–Stieltjes integration, whereby

P(X ∈ C) =
∫

C
dF (x) =

∫

C
fac(x) dx+

∑

x∈C∩S

fdis(x), C ⊂ X ;

the notation
∫ b
a is unwise because it doesn’t distinguish C = [a, b] from C = (a, b).

stat.epfl.ch Autumn 2024 – slide 11

6



New distributions and new random variables

! We define the conditional distribution of X given an event B ∈ F by

P(X ∈ A | B) = P({X ∈ A} ∩ B)/P(B).

! If Y = g(X) ∈ Y and we write g−1(B) = {x : g(x) ∈ B} for B ⊂ Y, then

P(Y ∈ B) = P{g(X) ∈ B} = P{X ∈ g−1(B)}.

! If X is continuous and Y = g(X) with g a smooth bijection, then (in obvious notation)

fY (y) = fX{g−1(y)}
∣∣∣∣
∂g−1(y)

∂y

∣∣∣∣ ,

where the last term is the Jacobian of the transformation.

! If X = (X1,X2) is continuous, we obtain marginal and conditional densities

fX2(x2) =

∫
fX1,X2(x1, x2) dx1, fX1|X2

(x1 | x2) =
fX1,X2(x1, x2)

fX2(x2)
,

with corresponding formulae in the discrete and mixed cases.

! X1 and X2 are independent (X1 ⊥⊥ X2) iff fX1,X2(x1, x2) = fX1(x1)fX2(x2), ∀x1, x2.
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Exchangeability

! Exchangeability is weaker than independence, often used to model variables that are
indistinguishable in probabilistic terms, even if not independent.

! de Finetti proved that such variables must be constructed as U1, . . . , Un | θ iid∼ Fθ, where θ ∼ G
for distributions Fθ and G. The simplest theorem to this effect is the one below.

Definition 1 Random variables U1, . . . , Un are finitely exchangeable if their density satisfies

f(u1, . . . , un) = f
(
uξ(1), . . . , uξ(n)

)

for any permutation ξ of the set {1, . . . , n}. An infinite sequence U1, U2, . . . , is called infinitely
exchangeable if every finite subset of it is finitely exchangeable.

Theorem 2 (de Finetti) If U1, U2, . . ., is an infinitely exchangeable sequence of binary variables
taking values in {0, 1}, then for any n there is a distribution G such that

f(u1, . . . , un) =

∫ 1

0

n∏

j=1

θuj(1− θ)1−uj G(dθ) (1)

where
G(θ) = lim

m→∞
P
{
m−1(U1 + · · ·+ Um) ≤ θ

}
, θ = lim

m→∞
m−1(U1 + · · ·+ Um).

stat.epfl.ch Autumn 2024 – slide 13
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Terminology and notation

! PDFs and PMFs are not the same but we henceforth use the term density for both.

! X1, . . . ,Xn
iid∼ f means that the Xj are independent and all have density f , and we then call the

Xj a random sample (of size n) from f .

! X1, . . . ,Xn
ind∼ f1, . . . , fn means that the Xj are independent and Xj ∼ fj.

! X1, . . . ,Xn
ind∼ (µ,σ2) means that the Xj are independent with mean µ and variance σ2 (with

0 < σ2 < ∞). The Xj need not be normal or have the same distribution.

! X1, . . . ,Xn
ind∼ (µ1, . . . , µn,σ21 , . . . ,σ

2
n) means that the Xj are independent with means µj and

variances σ2j (where 0 < σ2j < ∞).

! The p quantile of the distribution F of a scalar random variable X is

xp = inf{x : F (x) ≥ p}, 0 < p < 1.

Usually xp = F−1(p) for continuous X, but not for discrete (or mixed) X.

! A standard normal variable Z ∼ N (0, 1) has PDF and CDF

φ(z) =
1√
2π

e−z2/2, Φ(z) =

∫ z

−∞
φ(u) du, z ∈ R.

and p quantile zp = Φ−1(p), so X = µ+ σZ ∼ N (µ,σ2) has p quantile µ+ σzp.

stat.epfl.ch Autumn 2024 – slide 14

Order statistics

! The order statistics of X1, . . . ,Xn
iid∼ f are the ordered values

X(1) ≤ X(2) ≤ · · · ≤ X(n−1) ≤ X(n).

! In particular, the minimum is X(1), the maximum is X(n), and the median is

X(m+1) (n = 2m+ 1, odd), 1
2 (X(m) +X(m+1)) (n = 2m, even).

The median is the central value of X1, . . . ,Xn.

! If f is continuous then the Xj must be distinct, and for r = 1, . . . , n we have

P(X(r) ≤ x) =
n∑

j=r

(
n

j

)
F (x)j{1− F (x)}n−j ,

fX(r)
(x) =

n!

(r − 1)! 1! (n − r)!
F (x)r−1f(x){1− F (x)}n−r.

! Joint densities can be obtained using the argument that gives fX(r)
(x), and in particular

fX(1),...,X(n)
(x1, . . . , xn) = n!f(x1) · · · f(xn), x1 < · · · < xn.

Example 3 Find the joint density of X(2), . . . ,X(n−1) given that X(1) = x1 and X(n) = xn.

stat.epfl.ch Autumn 2024 – slide 15
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Note: Densities of order statistics

! The event X(r) ≤ x occurs iff at least r of the independent variables X1, . . . ,Xn are less than or
equal to x, and each of them does this with probability F (x). Hence the probability of the event is
given by a binomial probability, and a little thought shows that this is the stated formula.

! The density can be obtained by differentiation of P(X(r) ≤ x), whereupon one finds that almost
all the terms cancel, giving the stated density. A more easily generalised argument is as follows: for
the event X(r) ∈ [x, x+ dx), we need to split the sample into three groups of respective sizes
r − 1, 1 and n− r and ‘probabilities’ F (x), f(x)dx, and 1− F (x). The corresponding
multinomial ‘probability’ is

n!

(r − 1)! × 1!× (n − r)!
{F (x)}r−1 × f(x)dx× {1− F (x)}n−r,

and dropping the dx gives the density function of X(r).

! For the joint density we divide the sample into n parts, each with one observation, and apply a
version of the multinomial argument just given.

stat.epfl.ch Autumn 2024 – note 1 of slide 15

Note to Example 3

! The joint density of X(1) and X(n) is given by splitting the total n observations into three parts,
with respective ‘probabilities’ f(x1)dx1, F (xn)− F (x1) and f(xn)dxn and sizes 1, n− 2 and 1,
giving

fX(1),X(n)
(x1, xn)dx1dxn =

n!

1!(n − 2)!1!
f(x1)dx1×{F (xn)−F (x1)}n−2×f(xn)dxn, x1 < xn.

We drop the dx1dxn to get the joint density.

! Hence the conditional density of X(2), . . . ,X(n−1) given that X(1) = x1 and X(n) = xn is

n!f(x1) · · · f(xn)
n!/(n− 2)!× f(x1){F (xn)− F (x1)}n−2f(xn)

= (n− 2)!
n−1∏

j=2

f(xj)

F (xn)− F (x1)
,

where x1 < x2 < · · · < xn−1 < xn. This is the joint density of the order statistics of a random
sample of size n− 2 from the truncated distribution f(x)/{F (xn)− F (x1)}, where x1 < x < xn.
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Moments

! The expectation E{g(X)} of g(X) is defined if E{|g(X)|} < ∞ as

E{g(X)} =

∫

X
g(x) dF (x).

! For scalar X we define moments E(Xr), mean µ = E(X) and variance

var(X) = E[{X − E(X)}2] = E(X2)− E(X)2 = E{X(X − 1)}+ E(X)− E(X)2.

! var(X) = 0 iff X is constant with probability one.

! For vector X we define the mean vector and (co)variance matrix

µ = E(X), cov(X1,X2) = E(X1X
T
2 )− E(X1)E(X2)

T,

and write var(X) = cov(X,X) = E{(X − µ)(X − µ)T}.
! The correlation, corr(X1,X2) = cov(X1,X2)/{var(X1)var(X2)}1/2, is a measure of dependence

between variables that does not depend on their units of measurement.

! Expectation E(·) is a linear operator, so it is easy to check that

E(a+BX) = a+BE(X), cov(a+BX, c+DX) = Bvar(X)DT.
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Conditional moments

! The conditional expectation of g(X,Y ) given X = x is

E{g(X,Y ) | X = x} =

∫

Y
g(x, y) dF (y | x),

which in the continuous and discrete cases equals
∫

Y
g(x, y)fY |X(y | x) dy,

∑

y∈Y

g(x, y)fY |X(y | x),

and other conditional moments are defined likewise.

! This is a function of x, so it defines a random variable g̃(X) = E{g(X,Y ) | X}.
! The law of total expectation (tower property) gives

E {g(X,Y )} = EX [E{g(X,Y ) | X = x}] ,
var {g(X,Y )} = EX [var{g(X,Y ) | X = x}] + varX [E{g(X,Y ) | X = x}] ,

where EX denotes expectation with respect to the marginal distribution of X, etc., with a similar
expression (which you should give) for cov{g(X,Y ), h(X,Y )}.

! We ignore mathematical issues arising from conditioning on events of probability zero — look up
‘Borel–Kolmogorov paradox’ if interested.

stat.epfl.ch Autumn 2024 – slide 17
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Multivariate normal distribution

A random variable Xn×1 with real components has the multivariate normal distribution,
X ∼ Nn(µ,Ω), if aTX ∼ N (aTµ, aTΩa) for every constant vector an×1, and then

! MY (t) = exp(tTµ+ 1
2t

TΩt) and the mean vector and covariance matrix of X are

E(X) = µn×1, var(X) = Ωn×n,

where Ω is symmetric semi-positive definite with real components;

! for any constants am×1 and Bm×n,

a+BX ∼ Nm (a+Bµ,BΩBT) ;

! a+BX and c+DX are independent iff BΩDT = 0;

! X has a density on Rn iff Ω is positive definite (i.e., has rank n), and then

f(x;µ,Ω) =
1

(2π)n/2|Ω|1/2
exp

{
−1

2(x− µ)TΩ−1(x− µ)
}
, x ∈ R

n; (2)

! if XT = (XT
1 ,X

T
2 ), where X1 is m× 1, and µ and Ω are partitioned correspondingly, then the

marginal and conditional distributions of X1 are also multivariate normal:

X1 ∼ Nm(µ1,Ω11), X1 | X2 = x2 ∼ Nm
{
µ1 + Ω12Ω

−1
22 (x2 − µ2),Ω11 − Ω12Ω

−1
22 Ω21

}
.
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MGFs and KGFs

! The moment-generating function (MGF) and cumulant-generating function (KGF) of a
scalar random variable X are

MX(t) = E
(
etX
)
, KX(t) = logMX(t), t ∈ N = {t : MX(t) < ∞}.

! N is non-empty, because MX(0) = 1, but the MGF and KGF are non-trivial only if N contains an
open neighbourhood of the origin, since then

MX(t) = E

(
∞∑

r=0

trXr

r!

)

=
∞∑

r=0

tr

r!
E(Xr), KX(t) =

∞∑

r=1

tr

r!
κr,

and one can obtain the moments E(Xr) and cumulants κr by differentiation.

! In the vector case we define

MX(t) = E
(
et

TX
)
, KX(t) = logMX(t),

and differentiation with respect to the elements of t = (t1, . . . , tn)T gives the mean vector and
covariance matrix of X.

! There is a 1–1 mapping between distributions and MGFs/KGFs (if the latter are non-trivial).

! KGFs for linear combinations are computed as Ka+BX(t) = aTt+KX(BTt).

stat.epfl.ch Autumn 2024 – slide 19
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Note: Moments and cumulants

! We consider scalar X, as the calculations for vector X are analogous.

! First note that MX(t) = 1 when t = 0, since E(etX ) = E(1) = 1; thus 0 ∈ N for any X.

! If N contains an open set (−a, a) for some a > 0, and µr = E(Xr) denotes the rth moment of
X, then if |t| < a,

KX(t) =
∞∑

r=1

trκr
r!

= logMX(t) = log

(
∞∑

r=0

trµr

r!

)

= log(1 + b) = b− b2/2 + b3/3 + · · · ,

where b = tµ1 + t2µ2/2! + t3µ3/3! + · · · . If we expand and compare coefficients of t, t2, t3, . . . in
the two expansions we get

κ1 = µ1, κ2 = µ2 − µ2
1, κ3 = µ3 − 3µ2µ1 + 2µ3

1, κ4 = µ4 − 4µ3µ1 + 6µ2µ
2
1 − 3µ4

1, . . . ,

so κ1 = E(X), κ2 = var(X), κ3 = E{(X − µ1)3}, . . .

stat.epfl.ch Autumn 2024 – note 1 of slide 19

Exponential tilting

! A baseline density f0 with a non-trivial MGF can be used to construct a family of densities by
exponential tilting, i.e.,

f(y;ϕ) = f0(y) exp {ϕTs(y)− k(ϕ)} , y ∈ Y,ϕ ∈ N ,

where
N = {ϕ : k(ϕ) < ∞}

and individual members of the family are determined by the value of ϕ.

! Hölder’s inequality gives

M{αϕ1 + (1− α)ϕ2} ≤ M(ϕ1)
αM(ϕ2)

1−α < ∞, 0 ≤ α ≤ 1,

for any ϕ1,ϕ2 ∈ N , so the set N and the function k are both convex.

! This implies that f(y;ϕ) is log-concave in ϕ, which is very useful for statistics.

! This construction leads to an elegant general theory putting many well-known distributions
(Poisson, binomial, normal, . . . ) under the same roof.

Example 4 Investigate exponential tilting when f0(y) is uniform on (0, 2π] with
s(y) = (cos y, sin y)T.

stat.epfl.ch Autumn 2024 – slide 20
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Note to Example 4

Here Y = (0, 2π] is finite, and s(y) has dimension 2 and is bounded, so with (ϕ1,ϕ2) ∈ R2,

∫
f0(y) exp {ϕTs(y)} dy =

1

2π

∫ 2π

0
exp(ϕ1 cos y + ϕ2 sin y) dy

=
1

2π

∫ 2π

0
exp{θ2 cos(y − θ1)}dy = I0(θ2),

where θ2 = (ϕ2
1 + ϕ2

2)
1/2 ≥ 0, θ1 = tan−1(θ2/θ1) ∈ (0, 2π], and I0(θ2) is a modified Bessel function of

the first kind and order 0. Hence ϕ1 = θ2 cos θ1 and ϕ2 = θ2 sin θ1. Hence

k(ϕ) = log I0{(ϕ2
1 + ϕ2

2)
1/2}, ϕ ∈ N = R

2.

This is the von Mises–Fisher distribution on the circle, which concentrates around θ1, with the degree
of concentration determined by θ2 ≥ 0; θ2 = 0 gives the uniform density.
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Exponential family models

! If θ ∈ Θ ⊂ Rd, where dimΘ = d, and there exists a d× 1 function s = s(y) of data y and a
parametrisation (i.e., a 1–1 function) ϕ ≡ ϕ(θ) such that

f(y; θ) = m(y) exp {sTϕ− k(ϕ)} = m(y) exp [sTϕ(θ)− k{ϕ(θ)}] , θ ∈ Θ, y ∈ Y,

then this is an (d, d) exponential family of distributions, with

– canonical statistic S = s(Y ),

– canonical parameter ϕ,

– cumulant generator k, which is convex on N = {ϕ : k(ϕ) < ∞}, and

– mean parameter µ ≡ µ(ϕ) = E(S;ϕ) = ∇k(ϕ), where ∇· = ∂ · /∂ϕ.

! We suppose that there is no vector a such that aTS is constant, and call the model a minimal
representation if there is no vector a such that aTϕ is constant.

! The cumulant-generating function for S is

KS(t) = logMS(t) = k(ϕ+ t)− k(ϕ), t ∈ N ′ ⊂ R
d,

where 0 ∈ N ′. On writing ∇2· = ∂2 · /∂ϕ∂ϕT, one can check that

E(S) = ∇k(ϕ), var(S) = ∇2k(ϕ).

stat.epfl.ch Autumn 2024 – slide 21
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Note: Cumulant-generating functions

! The MGF for the canonical statistic S of an exponential family is

MS(t) = E {exp(tTS)} =

∫
m(y) exp {sTt+ sTϕ− k(ϕ)} dy,

and since this must equal unity when t = 0 we see that
∫

m(y) exp {sTϕ} dy = exp{k(ϕ)},

and therefore that if it is defined,

MS(t) =

∫
m(y) exp {sT(t+ ϕ)− k(ϕ)} dy = exp{k(ϕ + t)− k(ϕ)},

which yields KS(t) = k(ϕ+ t)− k(ϕ).

! Now MS(0) = 1, KS(0) = 0, ∂KS(t)/∂t = ∇k(ϕ+ t) and ∂2KS(t)/∂t∂tT = ∇2k(ϕ+ t), so

E(S) = ∂MS(t)/∂t|t=0 = ∂eKS(t)/∂t
∣∣∣
t=0

= ∂KS(t)/∂t e
KS (t)

∣∣∣
t=0

= ∇k(ϕ).

A similar calculation for the variance gives

E(SST) = ∂2MS(t)/∂t∂t
T
∣∣
t=0

= ∇2k(ϕ) +∇k(ϕ)∇k(ϕ)T,

and thus

var(S) = E(SST)− E(S)E(S)T = ∇2k(ϕ) +∇k(ϕ)∇k(ϕ)T −∇k(ϕ)∇k(ϕ)T = ∇2k(ϕ).
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Examples

Example 5 (Poisson sample) If Y1, . . . , Yn
iid∼ Poiss(θ), find the corresponding exponential family.

Example 6 (Satellite conjunction) A simple model for the position Y of a satellite in R2 relative to
the origin is

Y ∼ N2

{(
ψ cos λ
ψ sinλ

)
,

(
d−1
1 0
0 d−1

2

)}
,

where d1, d2 > 0 are known and ψ > 0, 0 < λ ≤ 2π. Write the corresponding density

f(y1, y2;ψ,λ) =
(d1d2)1/2

2π
exp

[
−1

2

{
d1(y1 − ψ cos λ)2 + d2(y2 − ψ sinλ)2

}]
, y1, y2 ∈ R,

as an exponential family.

! NB: avoid confusion — exponential family ̸= exponential distribution! The exponential
distribution is just one example of an exponential family.
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Note to Example 5

Independent Poisson Y1, . . . , Yn have joint density

fy(y; θ) =
n∏

j=1

f(yj; θ) =
n∏

j=1

θyj

yj!
e−θ = m(y) exp(s log θ − nθ),

where m(y) = (
∏

yj)−1. This is a (1, 1) exponential family with

! canonical statistic s = s(y) =
∑

yj,

! canonical parameter log θ = ϕ ∈ N = R,

! cumulant generator k(ϕ) = nθ = neϕ and

! mean parameter µ = ∇k(ϕ) = neϕ = nθ = E(S).

Two standard parametrizations use the real parameter ϕ or the mean µ = neϕ ∈ R+.
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Note to Example 6

! The multivariate normal density is

f(y;µ,Ω) =
1

(2π)n/2|Ω|1/2
exp

{
−1

2(y − µ)TΩ−1(y − µ)
}
, y ∈ R

n

= (2π)−n/2 exp
{
−1

2(y − µ)TΩ−1(y − µ)− 1
2 log |Ω|

}
,

and if Ω is known then the exponent can be written as

−1
2 log{(2π)

n|Ω|}− 1
2y

TΩ−1y + yTΩ−1µ− 1
2µ

TΩ−1µ = logm(y) + s(y)Tϕ− k(ϕ),

where s(y) = Ω−1y, ϕ = µ and k(ϕ) = 1
2ϕ

TΩ−1ϕ. It is easy to check that
∇k(ϕ) = Ω−1ϕ = E(S) and ∇2k(ϕ) = Ω−1 = var(S).

! In the satellite example d = 2, Ω = D−1 is diagonal, and with θT = (ψ,λ) we have

ϕT = (ϕ1,ϕ2) = (ψ cos λ,ψ sinλ), s(Y ) = (d1Y1, d2Y2), k(ϕ) = d1ϕ
2
1/2 + d2ϕ

2
2/2.

The θ parametrisation gives the polar coordinates of the mean ϕ, but these are clearly equivalent
because there is a 1–1 mapping between them.
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Exponential family models II

! When dim s = d′ > dim θ = d the model is called a (d′, d) curved exponential family, and the
d′ × 1 vector ϕ(θ) gives a d-dimensional sub-manifold of Rd′ .

! Exponential families are closed under sampling: the joint density of independent observations
Y1, . . . , Yn from an exponential family with the same s(Yj)Tϕ = ST

j ϕ is

n∏

j=1

f(yj; θ) =
n∏

j=1

m(yj) exp
{
sT
j ϕ− kj(ϕ)

}
=

n∏

j=1

m(yj) exp

⎧
⎨

⎩

⎛

⎝
n∑

j=1

sj

⎞

⎠
T

ϕ−
n∑

j=1

kj(ϕ)

⎫
⎬

⎭ ,

so with kS(ϕ) =
∑

j kj(ϕ), the density of S =
∑

j Sj =
∑

j s(Yj) is

f(s; θ) = m∗(s)es
Tϕ−kS(ϕ), with m∗(s) =

∫

{y:∑j s(yj)=s}

n∏

j=1

m(yj) dy.

This is an exponential family, with canonical statistic S, canonical parameter ϕ and cumulant
generator kS(ϕ).

Example 7 (Satellite conjunction) Show that taking ψ known in Example 6 gives a (2, 1)
exponential family.
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Note to Example 7

We previously had

ϕT = (ϕ1,ϕ2) = (ψ cos λ,ψ sinλ), s(Y ) = (d1Y1, d2Y2), k(ϕ) = d1ϕ
2
1/2 + d2ϕ

2
2/2,

but with ψ known we can write

ϕT = (ϕ1,ϕ2) = (cos λ, sin λ), s(Y ) = (ψd1Y1,ψd2Y2), k(ϕ) = ψ2(d1ϕ
2
1 + d2ϕ

2
2)/2,

where λ is the only unknown parameter. This is a (2, 1) exponential family because it cannot be
written in terms of a scalar ϕ; the mean traces a curve (a circle) as λ varies.
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Inequalities

! A real-valued convex function g defined on a vector space V has the property that for any
x, y ∈ V,

g{tx+ (1− t)y} ≤ tg(x) + (1− t)g(y), 0 ≤ t ≤ 1.

Equivalently, for all y ∈ V, there exists a vector b(y) such that

g(x) ≥ g(y) + b(y)T(x− y)

for all x. If g(x) is differentiable, then we can take b(y) = g′(y).

! If X is a random variable, a > 0 a constant, h a non-negative function and g a convex function,
then

P{h(X) ≥ a} ≤ E{h(X)}/a, (basic inequality)

P(|X| ≥ a) ≤ E(|X|)/a, (Markov’s inequality)

P(|X| ≥ a) ≤ E(X2)/a2, (Chebyshov’s inequality)

E{g(X)} ≥ g{E(X)}. (Jensen’s inequality)

! On replacing X by X − E(X), Chebyshov’s inequality gives

P{|X − E(X)| ≥ a} ≤ var(X)/a2.
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Note: Inequalities

(a) Let Y = h(X). If y ≥ 0, then for any a > 0, y ≥ yI(y ≥ a) ≥ aI(y ≥ a). Therefore

E{h(X)} = E(Y ) ≥ E{Y I(Y ≥ a)} ≥ E{aI(Y ≥ a)} = aP(Y ≥ a) = aP{h(X) ≥ a},

and division by a > 0 gives the result.
(b) Note that h(x) = |x| is a non-negative function on R, and apply (a).
(c) Note that h(x) = x2 is a non-negative function on R, and that P(X2 ≥ a2) = P(|X| ≥ a).
(d) A convex function has the property that, for all y, there exists a value b(y) such that
g(x) ≥ g(y) + b(y)(x− y) for all x. If g(x) is differentiable, then we can take b(y) = g′(y). (Draw a
graph if need be.) To prove this result, we take y = E(X), and then have

g(X) ≥ g{E(X)} + b{E(X)}{X − E(X)},

and taking expectations of this gives E{g(X)} ≥ g{E(X)}.
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Modes of convergence

! Let X,X1,X2, . . . have CDFs F,F1, F2, . . . and let ε > 0 be arbitrary. Then

– Xn converges to X almost surely, Xn
a.s.−→ X, if P(limn→∞Xn = X) = 1;

– Xn converges to X in probability, Xn
P−→ X, if limn→∞P(|Xn −X| > ε) = 0;

– Xn converges to X in distribution, Xn
D−→ X, if limn→∞ Fn(x) = F (x) at each point x

where F (x) is continuous.

– A sequence X1,X2, . . . of estimators of a parameter θ is strongly consistent if Xn
a.s.−→ θ and

(weakly) consistent if Xn
P−→ θ.

!
a.s.−→ and

P−→ , but not
D−→ , require joint distributions of (Xn,X) for every n.

! Let x0, y0 be constants, X,Y, {Xn}, {Yn} rbe andom variables and g(·) and h(·, ·) continuous
functions. Then

Xn
a.s.−→ X ⇒ Xn

P−→ X ⇒ Xn
D−→ X,

Xn
D−→ x0 ⇒ Xn

P−→ x0,

Xn
a.s.−→ X ⇒ g(Xn)

a.s.−→ g(X),

Xn
D−→ X and Yn

D−→ y0 ⇒ h(Xn, Yn)
D−→ h(X, y0).

The last two lines are called the continuous mapping theorem (usually used with
P−→ ) and

Slutsky’s theorem.
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Limit theorems

Theorem 8 (Weak law of large numbers, WLLN) If X,X1,X2, . . .
iid∼ F and E(X) is finite, then

X = n−1(X1 + · · ·+Xn)
P−→ E(X).

Theorem 9 (Strong law of large numbers, SLLN) If X,X1,X2, . . .
iid∼ F and E(X) is finite, then

X = n−1(X1 + · · ·+Xn)
a.s.−→ E(X).

Theorem 10 (Central limit theorem, CLT) If X1,X2, . . .
iid∼ (µ,σ2) and 0 < σ2 < ∞, then

Zn =
n1/2(X − µ)

σ
D−→ Z ∼ N (0, 1), n → ∞.

Theorem 11 (‘Delta method’) If an(Xn − µ)
D−→ Y , an, µ ∈ R, an → ∞ as n → ∞, and g is

continuously differentiable at µ with g′(µ) ̸= 0, then an{g(Xn)− g(µ)} D−→ g′(µ)Y .

! The CLT provides the finite-sample approximation Zn
·∼ N (µ,σ2/n), where

·∼ means ‘is
approximately distributed as’.

! Many more general laws of large numbers and versions of the CLT exist.

! The delta method also applies with Xn, Z ∈ Rp, g(x) : Rp → Rq continuously differentiable and
g′(µ) replaced by Jg(µ) = ∂g(µ)/∂µT.
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1.3 Statistics Revision slide 27

Statistical activities

! Planning of investigations

! Obtaining reliable data

! Exploratory data analysis/visualisation

! Model formulation

! Point estimation of a population parameter

! Interval estimation for a population parameter

! Hypothesis testing to assess whether observed data support a particular model

! Prediction of a future or unobserved random variable

! Decision analysis to choose an action based on data and the costs of potential actions

This course covers some aspects of those activities in red above.
Many inferential tasks can be formulated in decision-theoretic terms, but we shall mostly avoid this.
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Statistical models

! Use observed data to draw conclusions about a ‘population’, i.e., a model from which the data are
assumed to be drawn, or about future data.

! A statistical model is a family of probability distributions for data y in a sample space Y.

! A parametric model (family of models) f ≡ f(y; θ) or equivalently F ≡ f(y; θ) is determined
by parameters θ ∈ Θ ⊂ Rd, for fixed finite d.

! If no such θ exists, F is nonparametric, and then the parameter is often determined by F
through a statistical functional θ = t(F ), e.g.,

µ = t1(F ) =

∫
y dF (y), σ2 = t2(F ) =

∫
y2 dF (y)−

{∫
y dF (y)

}2

.

! Parameters have different roles (which can change during an investigation):

– interest parameters represent targets of inference (e.g., the mean of a population, the slope
of a line, a baseline blood pressure) with direct substantive interpretations;

– nuisance parameters are needed to complete a model specification, but are not themselves of
main concern.

! A parametric model should have a 1–1 map from θ to f(·; θ), so parameters identify models.
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Model formulation

! Two broad types of statistical model:

– substantive — based on fundamental subject-matter theory (e.g., quantum theory, Mendelian
genetics, Navier–Stokes equations);

– empirical — a convenient, adequately realistic, representation of data variation;

– and of course a broad spectrum between them.

! We aim that

– primary questions/issues are encapsulated in the interest parameter;

– secondary aspects can be accounted for, often via nuisance parameters;

– variation in the data is realistically modelled, leading to reasonable statements of uncertainty;

– any special feature of the data or data collection process is represented;

– different approaches to analysis can if necessary be compared.

! Such models are always provisional and should if possible be checked against data.
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Some notation

! By convention we (try to) use

– letters like c, d, . . . for (known) constants,

– Roman letters for random variables X,Y, . . . and their realisations x, y, . . .,

– Greek letters µ, ν,ψ,λ,Ω,∆, . . . for unknown parameters.

! We distinguish the data actually observed, yo, from other possible values y, and likewise for
estimators θ̂o, probabilities po = P(Y ≥ yo), . . . , based on yo.

! We write ∇· = ∂ · /∂ϕ and ∇2· = ∂2 · /∂ϕ∂ϕT for differentiation with respect to a parameter, and
∇y etc., for other derivatives.

! In general discussion we often suppose that data Y come from some unknown ‘true’ density g, but
we fit a candidate density f(y; θ) that may be different from g.
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Point estimation

! An estimator of a parameter θ ∈ Θ based on data Y is a random variable θ̃ = θ̃(Y ) taking values
in Θ. A specific value is an estimate θ̃(y).

! An M(aximisation)-estimator is computed using a function ρ(y; θ′) as

θ̃ = argmaxθ′
1

n

n∑

j=1

ρ(Yj; θ
′).

Often θ̃ also solves
1

n

n∑

j=1

∇ρ(Yj; θ
′) = 0

and is then called a Z(ero)-estimator.

! Equivalently we could minimise the loss function −ρ with respect to θ.

! If the true underlying model is g, then θ̃ is replaced by θg, where

θg = argmaxθ′

∫
ρ(y; θ′)g(y) dy,

∫
∇ρ(y; θg)g(y) dy = 0.

Clearly if g(y) = f(y; θ), then we want θg = θ, uniquely.
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Examples

! Some examples (for a d-dimensional parameter θ):

– maximum likelihood estimation has ρ(y; θ′) = log f(y; θ′);

– method of moments estimation has h(y) = (y, y2, . . . , yd)T, µ(θ′) = E{h(Y )}, and

−ρ(y; θ′) = {h(y) − µ(θ′)}T{h(y)− µ(θ′)};

– generalized method of moments estimation (widely used in econometrics) also has a
symmetric positive definite d× d matrix w(θ′) and

−ρ(y; θ′) = {h(y) − µ(θ′)}Tw(θ′){h(y) − µ(θ′)};

– least squares estimation is method of moments estimation with h(yj) = yj and
µj(θ′) = E(Yj) = xT

j θ
′;

– score-matching estimation (unfortunate misnomer) with Y ∼ g has

−ρ(y; θ′) = {∇y log f(y; θ)−∇y log g(y)}2 .

! There are many (many!) other approaches to estimation.
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Examples

Example 12 Discuss maximum likelihood estimation of the parameters of the normal distribution.

Example 13 Discuss moment estimation of the parameters of the Weibull distribution.

Example 14 Show that under mild (but not entirely trivial) conditions on the density g, the
population version of the score-matching estimator is

argminθE
[
{∇y log f(Y ; θ)}2 + 2∇2

y log f(Y ; θ)
]
,

and give the sample version.
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Note to Example 12

! The density function of a normal random variable with mean µ and variance σ2 is
(2πσ2)−1/2 exp{−(y − µ)2/(2σ2)}, so here θ2×1 = (µ,σ2)T ∈ R× R+, and the likelihood for a
random sample y1, . . . , yn equals

L(θ) = f(y; θ) =
n∏

j=1

f(yj; θ) =
n∏

j=1

1√
2πσ2

exp

{
−(yj − µ)2

2σ2

}
.

Therefore the log likelihood is

ℓ(µ,σ) = −n

2
log(2π) − n

2
log σ2 − 1

2σ2

n∑

j=1

(yj − µ)2, µ ∈ R,σ2 > 0.

Its first derivatives are

∂ℓ

∂µ
= σ−2

n∑

j=1

(yj − µ),
∂ℓ

∂σ2
= − n

2σ2
+

1

2σ4

n∑

j=1

(yj − µ)2,

and its (negative) second derivatives are

∂2ℓ

∂µ2
= − n

σ2
,

∂2ℓ

∂µ∂σ2
= − n

σ4
(y − µ),

∂2ℓ

∂(σ2)2
=

n

2σ4
− 1

σ6

n∑

j=1

(yj − µ)2.

! To obtain the MLEs, we solve simultaneously the equations

(
∂ℓ(µ,σ2)
∂µ

∂ℓ(µ,σ2)
∂σ2

)

=

(
σ−2∑n

j=1(yj − µ)
− n

2σ2 + 1
2σ4
∑n

j=1(yj − µ)2

)
=

(
0
0

)
.

Now
∂ℓ(µ̂, σ̂2)

∂µ
= 0 ⇒ 1

σ̂2

n∑

j=1

(yj − µ̂) = 0 ⇒ nµ̂ =
n∑

j=1

yj ⇒ µ̂ = n−1
n∑

j=1

yj = y

and

∂ℓ(µ̂, σ̂2)

∂σ2
= 0 ⇒ n

2σ̂2
=

1

2σ̂4

n∑

j=1

(yj − µ̂)2 ⇒ σ̂2 = n−1
n∑

j=1

(yj − µ̂)2 = n−1
n∑

j=1

(yj − y)2.

The first of these has the sole solution µ̂ = y for all values of σ2, and therefore ℓ(µ̂,σ2) is
unimodal with maximum at σ̂2 = n−1∑(yj − y)2. At the point (µ̂, σ̂2), the hessian matrix is
diagonal with elements diag{n/σ̂2, n/(2σ̂4)}, and so is positive definite. Hence µ̂ = y and
σ̂2 = n−1

∑
(yj − y)2 are the sole solutions to the likelihood equation, and therefore are the

maximum likelihood estimates.
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Note to Example 13

! A Weibull variable X has CDF F (x) = 1− e−(λx)α , for x > 0 and λ,α > 0, and is exponential
when α = 1. Note that W = (λX)α ∼ exp(1), so

E(Xr) = E{(W 1/α/λ)r} = λ−rE(W r/α) = λ−r
∫ ∞

0
wr/αe−w dw = λ−rΓ(1 + r/α),

where Γ(·) is the gamma function. Hence with θ = (λ,α) the moment estimators solve

Y = µ1(θ) = λ−1Γ(1 + 1/α), Y 2 = µ2(θ) = λ−2Γ(1 + 2/α), λ,α > 0,

i.e.,
Y 2/(Y )2 = Γ(1 + 2/α̃)/Γ(1 + 1/α̃)2, λ̃ = Γ(1 + 1/α̃)/Y .
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Note to Example 14

! Score-matching can be useful when log f(y; θ) = h(y; θ)− k(θ) with k(θ) intractable. It is a
misnomer because the standard use of the term ‘score’ is for the derivative of the log likelihood
with respect to θ (not y).

! On writing log f(y; θ) = ℓ(θ) for brevity we can write

{∇y log f(y; θ)−∇y log g(y)}2 = {∇yℓ(θ)}2 − 2∇yℓ(θ)∇y log g(y) + {∇y log g(y)}2 ,

we see that the population version of the estimator is

θg = argminθ

∫
{∇yℓ(θ)}2 g(y) dy − 2

∫
{∇yℓ(θ)∇y log g(y)} g(y) dy,

because θ does not appear in the third term of the square. As g is unknown, the second integral
here appears intractable, but as g(y)∇y log g(y) = ∇yg(y), we have

∫
∇yℓ(θ)∇y log g(y)g(y) dy =

∫
∇yℓ(θ)∇yg(y) dy

and integration by parts gives∫
∇yℓ(θ)∇yg(y) dy = [∇yℓ(θ)g(y)] −

∫
∇2

yℓ(θ)g(y) dy

= −E
{
∇2

y log f(Y ; θ)
}
,

when the first integration term is identically zero. Hence

θg = argminθE
[
{∇y log f(Y ; θ)}2 + 2∇2

y log f(Y ; θ)
]
,

whose sample version,

θ̃ = argminθ

n∑

j=1

[
{∇y log f(Yj; θ)}2 + 2∇2

y log f(Yj; θ)
]
,

can be computed from the sample.

! Weighted versions can be used to kill the first term of the integral, when it is non-zero (exercise).
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Comparison of point estimators

! There are two generic bases for comparing point estimators:

– asymptotic — what happens when n → ∞?

– finite-sample — what happens for sample sizes met in practice?

! Consistency is a key asymptotic criterion: does θ̃ approach θg when n → ∞?

Definition 15 An estimator θ̃ of θg is (weakly) consistent if θ̃
P−→ θg as n → ∞.

! Consistency is necessary but not sufficient for an estimator to be good, because

θ̃
P−→ θg ⇒ θ̃∗ = θ̃ + 106/

√
log log n

P−→ θg, n → ∞,

but θ̃∗ is (probably) useless: consistency can be considered a ‘safety net’.

! Obviously we would like θ̃ to be ‘suitably close’ to θg, by minimising

MSE(θ̃; θg) = E
{
(θ̃ − θg)

2
}
, MAD(θ̃; θg) = E

(
|θ̃ − θg|

)
,

or other measures of distance (loss functions), asymptotically or in finite samples.
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Bias-variance and other tradeoffs

! Using the bias b(θ̃; θg) = E(θ̃)− θg, the mean square error can be expressed as

MSE(θ̃; θg) = b(θ̃; θg)
2 + var(θ̃),

so we must balance (‘trade off’) the bias and the variance when choosing θ̃.

! In simple problems we could insist that the estimator is unbiased, i.e., b(θ̃; θg) ≡ 0, but this is
usually artificial because

– many good estimators are biased, and some unbiased estimators are useless;

– it may be impossible to find an unbiased estimator; and

– other properties may be more desirable (e.g., robustness).

An exception is meta-analysis, which involves combining different estimators with possibly very
varied sample sizes, in which case we want them to estimate the same thing!

Example 16 The method of moments estimator of a scalar θ based on a random sample

Y1, . . . , Yn
iid∼ (µ,σ2) with sample average Y solves the equation µ(θ) = Y . Show that if µ(·) has two

smooth derivatives and is 1–1, then the estimator is consistent and asymptotically normal, with bias
and variance both of order n−1.
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Note to Example 16

! As the function µ(·) is smooth and 1–1, it has a differentiable inverse, and thus by the continuous

mapping theorem, θ̃ = µ−1(Y )
P−→ µ−1{µ(θ)} = θ, i.e., θ̃ is consistent. For simplicity of notation

write g(x) = µ−1(x) below.

! Now Y = µ+ σn−1/2Zn, where Zn = (Y − µ)/(σ2/n)1/2
D−→ Z ∼ N (0, 1), and we have

g(Y ) = g(µ) + g′(µ)σn−1/2Zn +
σ2

2
n−1g′′(µ + σn−1/2Z ′

n)Z
2
n,

where Z ′
n ∈ (0, Zn), i.e.,

θ̃ = θ + n−1/2σg′(µ)Zn + n−1An,

say, where An is a random variable of order 1. Taking expectations gives

b(θ̃; θ) = E(θ̃)− θ = n−1E(An) = O(n−1),

under mild further conditions on g′′.

! Now
n1/2(θ̃ − θ)/{σg′(µ)} = Zn + n−1/2A′

n
D−→ Z,

using this (or the delta method), so in large samples we have

θ̃
·∼ N{θ,σ2g′(µ)2/n}.
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Efficiency and the Cramèr–Rao lower bound

Definition 17 If θ̃1 and θ̃2 are estimators of scalar θ, then the relative efficiency of θ̃1 compared to
θ̃2 can be defined as

MSE(θ̃2; θ)

MSE(θ̃1; θ)
.

In large samples the squared bias is often negligible compared to the variance, and we define the
asymptotic relative efficiency as var(θ̃2)/var(θ̃1). Similar expressions apply if the parameter has
dimension d.

! Under mild conditions on the underlying model, a scalar estimator θ̃ based on Y ∼ f(y; θ) satisfies
the Cramèr–Rao lower bound,

var(θ̃) ≥ {1 +∇b(θ̃; θ)}2
ı(θ)

,

where ı(θ) is defined on the next slide. This bound applies for any sample size n. Moreover

– as n → ∞ the lower bound → 1/ı(θ), the asymptotic variance of the maximum likelihood
estimator, which hence is most efficient in large samples; and

– a similar result applies for vector θ.
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Bartlett identities

! For data Y ∼ f(y; θ) we define the log likelihood function ℓ(θ) = log f(Y ; θ) and d× 1 score
vector U(θ) = ∇ℓ(θ).

! If we can differentiate with respect to θ under the integral sign, we get the Bartlett identities:

0 =

∫
∇ log f(y; θ)× f(y; θ) dy,

0 =

∫
∇2 log f(y; θ)× f(y; θ) dy +

∫
∇ log f(y; θ)∇T log f(y; θ)× f(y; θ) dy,

0 = · · ·
giving the moments of U(θ), viz

E{U(θ)} = 0, var{U(θ)} = E {∇ℓ(θ)∇Tℓ(θ)} = E
{
−∇2ℓ(θ)

}
, . . .

where var{U(θ)} = ı(θ) is the d× d Fisher (or expected) information matrix.

! We write ı1(θ) for the Fisher information for a single observation of a random sample Y1, . . . , Yn,
and then that in the sample is ı(θ) = nı1(θ).

! Later we shall see that in large samples, the maximum likelihood estimator θ̂ satisfies

θ̂
·∼ Nd

{
θ, ı(θ)−1

}
.
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Note: Bartlett identities

! For any θ we have 1 =
∫
f(y; θ) dy, so provided we can exchange the order of integration and

differentiation we have

0 = ∇
∫

f(y; θ) dy =

∫
∇f(y; θ) dy =

∫
∇f(y; θ)

f(y; θ)

f(y; θ)
dy =

∫
∇ log f(y; θ) f(y; θ) dy.

! The second stems from a second differentiation and applying the chain rule to the terms in the
final integral here; likewise for the third and higher-order ones, which give higher-order moments of
U(θ).

! For independent data Y1, . . . , Yn we have U(θ) =
∑n

j=1 Uj(θ), where the Uj = ∇ log f(Yj; θ) are
independent, so using the Bartlett identities for the individual densities fj(yj; θ) we have

var{U(θ)} =
n∑

j=1

var{Uj(θ)} =
n∑

j=1

E{Uj(θ)U
T
j (θ)} =

n∑

j=1

−E{∇TUj(θ)} = −E {∇TU(θ)}

and this equals E
{
−∇2ℓ(θ)

}
= ı(θ), and this in turn equals nı1(θ).
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Note: CRLB

! We have

E(θ̃) =

∫
θ̃(y)f(y; θ) dy = θ + b(θ̃; θ),

and differentiation with respect to θ gives (setting b′(θ) = db(θ̃; θ)/dθ)

1 + b′(θ) =

∫
θ̃(y)df(y; θ)/dθ dy =

∫
θ̃(y)∇ℓ(θ)f(y; θ) dy = E{θ̃U(θ)} = cov{θ̃, U(θ)},

because U(θ) has mean zero. Hence the definition of correlation gives

cov{θ̃, U(θ)}2 = {1 + b′(θ)}2 ≤ var(θ̃)var{U(θ)} = var(θ̃)ı(θ),

which gives the result.

! If the bias is of order n−1, so too is its derivative, so in large samples we obtain

var(θ̃) ≥ ı(θ)−1 = var(θ̂).
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Pivots

! Point estimation does not express uncertainty — we need to assess how well the observed data yo

support different possible values of a parameter.

! We aim to find subsets of the parameter space that contain the ‘true’ parameter with a specified
probability — when the parameter of interest is scalar, these subsets are usually intervals.

! Pivots are useful in finding such subsets.

Definition 18 If Y has density f(y; θ), then a pivot (or pivotal quantity) Q = q(Y, θ) is a function
of Y and θ that has a known distribution (i.e., one that does not depend on θ).

Example 19 If M = max(Y1, . . . , Yn), where Y1, . . . , Yn
iid∼ U(0, θ), show that Q1 = M/θ is a pivot

and find a pivot based on Y .
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Note to Example 19

! Q1 is a function of the data and the parameter, and

P(M ≤ x) = FY (x)
n = (x/θ)n, 0 < x < θ,

so
P(Q1 ≤ q) = P(M/θ ≤ q) = P(M ≤ θq) = (θq/θ)n = qn, 0 < q < 1.

which is known and does not depend on θ. Hence Q1 is a pivot.

! If Y ∼ U(0, θ), then E(Y ) = θ/2 and var(Y ) = θ2/12. Hence Y has mean θ/2 and variance

θ2/(12n), and for large n, Y
·∼ N{θ/2, θ2/(12n)} using the central limit theorem. Therefore

Q2 =
Y − θ/2√
θ2/(12n)

= (3n)1/2(2Y /θ − 1)
·∼ N (0, 1).

Thus Q2 depends on both data and θ, and has an (approximately) known distribution: hence Q2 is
an (approximate) pivot.

! As Y/θ ∼ U(0, 1), we see that we could use simulation to compute the exact distribution of Q2,
and thus obtain an exact pivot (apart from simulation error). This is called a bootstrap
calculation, about which more later.
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Confidence intervals

Definition 20 Let Y = (Y1, . . . , Yn) be data from a parametric statistical model with scalar
parameter θ. A confidence interval (CI) (L,U) for θ with lower confidence bound L and upper
confidence bound U is a random interval that contains θ with a specified probability, called the
(confidence) level of the interval.

! L = l(Y ) and U = u(Y ) are computed from the data. They do not depend on θ.

! In a continuous setting (so < gives the same probabilities as ≤), and if we write the probabilities
that θ lies below and above the interval as

P (θ < L) = αL, P (U < θ) = αU ,

then (L,U) has confidence level

P (L ≤ θ ≤ U) = 1− P (θ < L)− P (U < θ) = 1− αL − αU .

! Often we seek an interval with equal probabilities of not containing θ at each end, with
αL = αU = α/2, giving an equi-tailed (1− α)× 100% confidence interval.

! We often take standard values of α, such that 1− α = 0.9, 0.95, 0.99, . . .

! A weaker requirement is P (L ≤ θ ≤ U) ≥ 1− α, giving confidence level at least 1− α.
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Construction of a CI

! We use pivots to construct CIs:

– we find a pivot Q = q(Y, θ) involving θ;

– we obtain the quantiles qαU
, q1−αL

of Q;

– then we transform the equation

P{qαU
≤ q(Y, θ) ≤ q1−αL

} = (1− αL)− αU

into the form
P(L ≤ θ ≤ U) = 1− αL − αU ,

where the bounds L = l(Y ;αL,αU ), U = u(Y ;αL,αU ) do not depend on θ;

– then we replace Y by its observed value yo to get a realisation of the CI.

! Going from quantiles of Q to L,U is known as inverting the pivot — it is convenient if Q is
monotone in θ for each Y .

! Often we have an approximate pivot (θ̂ − θ)/V 1/2 ·∼ N (0, 1), where V estimates var(θ̂) and V 1/2

is called a standard error. The resulting (approximate) 95% interval is θ̂ ± 1.96V 1/2.

Example 21 In Example 19, find CIs based on Q1 and on Q2.
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Note to Example 21

! The p quantile of Q1 = M/θ is given by p = P(Q1 ≤ qp) = qnp , so qp = p1/n. Thus

P{α1/n
U ≤ M/θ ≤ (1− αL)

1/n} = 1− αL − αU ,

and a little algebra gives that

P{M/(1 − αL)
1/n ≤ θ ≤ M/α1/n

U } = 1− αL − αU ,

so
L = M/(1− αL)

1/n, U = M/α1/n
U .

! For Q2 = (3n)1/2(2Y /θ − 1)
·∼ N (0, 1), the quantiles are z1−αL

and zαU
, so

P{zαU
≤ (3n)1/2(2Y /θ − 1) ≤ z1−αL

} = 1− αL − αU ,

and hence we obtain

L =
2Y

1 + z1−αL
/(3n)1/2

, U =
2Y

1 + zαU
/(3n)1/2

;

note that for large n these are L ≈ 2Y {1− z1−αL
/(3n)1/2} and U ≈ 2Y {1− zαU

/(3n)1/2}.
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Interpretation of a CI

! (L,U) is a random interval that contains θ with probability 1− α.

! We imagine an infinity of possible datasets from the experiment that resulted in (L,U).

! Our CI based on yo is regarded as randomly chosen from the resulting infinity of CIs.

! Although we do not know if θ ∈ (l(yo;αL,αU ), u(yo;αL,αU )), the event θ ∈ (L,U) has
probability 1− α across these datasets.

! In the figure below, the parameter θ (green line) is contained (or not) in realisations of the 95% CI
(red). The black points show the corresponding estimates.
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More about CIs

! Almost invariably CIs are two-sided and equi-tailed, i.e., αL = αU = α, but one-sided CIs of
form (−∞, U) or (L,∞) are sometimes required:

– compute a two-sided interval with αL = αU = α, then replace the unwanted limit by ±∞ (or
another value if required in the context).

! For a two-sided CI we define the lower- and upper-tail errors

P(θ < L), P(U < θ)

and if these equal the required value for each possible αL,αU , then the empirical coverage of the
CI exactly equals the desired value:

– this occurs when the distribution of the corresponding pivot is known, but in practice this
distribution is usually approximate, and then we use simulation to assess if and when CIs are
adequate;

– it’s better to consider the two errors separately, as their sum may be OK even when they are
individually incorrect;

– these errors are properties of the CI procedure, not of individual intervals!
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Prediction

! Prediction refers to ‘estimation’ of unobserved (future, latent, . . . ) random variables Y+.

! In parametric cases we often base prediction (or tolerance) intervals on existing data Y by
finding a pivot that depends on both Y+ and Y , and predicting Y+ using this pivot, e.g., using its
mean or median.

Example 22 If Y1, . . . , Yn, Y+
iid∼ N (µ,σ2), give prediction limits and a predictor for Y+ based on the

other variables.

Example 23 (Conformal prediction) Suppose we seek a prediction interval for the outcome of an
ML algorithm. In the simplest case, with Y1, . . . , Yn, Y+ real-valued and exchangeable, β ∈ (0, 1),
m = ⌈(n+ 1)β⌉ and qβ equal to the mth order statistic of Y1, . . . , Yn, show that

P(Y+ ≤ qβ) ≥ β,

and deduce that P(qα < Y+ ≤ q1−α) ≥ 1− 2α.
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Note to Example 22

! Standard results give Y ∼ N (µ,σ2/n) independent of (n− 1)S2/σ2 ∼ χ2
n−1, both independent of

Y+ ∼ N (µ,σ2), so Y+ − Y ∼ N (0,σ2 + σ2/n), independent of S2, leading to

Q =
Y+ − Y

{(1 + 1/n)S2}1/2
∼ tn−1,

leading to two-sided equi-tailed (1− 2α) prediction interval

Y ± (1 + 1/n)1/2Stn−1(1− α).

Note that even as n → ∞ this interval does not vanish, rather it approaches µ± σz1−α.

! The Yj are replaced by yoj to give the realisation of the interval.

! One obvious scalar predictor Ŷ+ is given by taking the median for Q, i.e., solving

q0.5 =
Ŷ+ − Y

{(1 + 1/n)S2}1/2
,

where in this case q0.5 = 0, giving Ŷ+ = Y and realised value yo.
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Note to Example 23

! Let q+β denote the mth order statistic of Y+ = {Y1, . . . , Yn, Y+}, and note that under
exchangeability Y+ equals any of the order statistics of Y+ with probability 1/(n + 1). Therefore

P(Y+ ≤ q+β ) = m/(n+ 1) = ⌈(n + 1)β⌉/(n + 1) ≥ (n+ 1)β/(n + 1) = β.

! Now suppose that m = 2 and Y+ ≤ q+β , so using an obvious notation Y can be represented as

• ≤ + ≤ • ≤ · · · or + ≤ • ≤ • ≤ · · · .

In both cases qβ ≥ q+β , so Y+ ≤ q+β implies that Y+ ≤ qβ, and conversely. This holds for any m, so

P(Y+ ≤ qβ) = P(Y+ ≤ q+β ) ≥ β.

Finally

P(qα < Y+ ≤ q1−α) = P(Y+ ≤ q1−α)− P(Y + ≤ qα) ≥ 1− α− α = 1− 2α,

as required.

! For this argument to be practical we must have 1 ≤ m ≤ n, so if β is too small or too large, then
we must replace the corresponding limit by ±∞, which does not usually give a useful interval.

! In applications the data are of form (X,Y ) and we train a prediction algorithm f̂ using a training
subset of Y = {(X1, Y1), . . . , (Xn, Yn)}, giving residuals Yj − f̂(Xj) for a test subset of Y disjoint

from the training set, and then apply the argument above to these residuals and Y+ − f̂(X+).
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Hypothesis testing

! A statistical hypothesis is an assertion about the population underlying some data, or
equivalently a restriction on possible models for the data, such as:

– the population has mean µ0;

– the population is N (µ0,σ20), with both parameters specified;

– the population is N (µ,σ2), with the parameters unspecified;

– the data are sampled from the discrete uniform distribution on {1, . . . , 9};
– the population density is symmetric about some µ;

– the population mean µ(x) increases when a covariate x increases.

! These are assertions about populations, not about data, but they have implications for data.

! Sometimes the distribution is fully specified, but not always.

! Some, but not all, hypotheses concern parameters.

! A hypothesis test uses a stochastic ‘argument by contradiction’ to make an inference about a
statistical hypothesis: we assume that the hypothesis is true, and attempt to use our data to
disprove it.
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Elements of a test

! A null hypothesis H0 to be tested.

! A test statistic T , large values of which suggest that H0 is false, and with observed value tobs.

! A P-value
pobs = P0(T ≥ tobs),

where the null distribution P0(·) denotes a probability computed under H0.

! The smaller pobs is, the more we doubt that H0 is true.

! Tests on parameters are often based on pivots: if θ = θ0, then T = |q(Y ; θ0)| has a known
distribution G0, say, and observing a value tobs = |q(yo; θ0)| that is unusual relative to G0

‘contradicts’ H0.

! In other cases we choose a test statistic that seems plausible, such as Pearson’s statistic,

T =
K∑

k=1

(Ok − Ek)
2/Ek,

used to check whether observed counts Ok in K categories agree with their expectations
Ek = E(Ok) computed under H0.

! In any case we need to know (or be able to approximate) the distribution of T under H0.
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1.4 Bases for Uncertainty slide 47

Uncertainty

! Essentially three bases for statements of uncertainty:

– a frequentist (sampling theory) inference compares y with a set S ⊂ Y of other data that
might have been observed in a hypothetical sampling experiment;

– a Bayesian (inverse probability) inference expresses uncertainty via a prior probability
density and uses Bayes’ theorem to update this in light of the data;

– in a designed experiment, clinical trial, sample survey or similar the investigator uses
randomisation to generate a distribution against which y is compared.

! There are many variants of the first two approaches.

! A frequentist should choose the reference set (aka recognisable subset) S of the sample space
Y thoughtfully.

Example 24 (Measuring machines) A physical quantity θ can be measured with two machines,
both giving normal observations Y ∼ N (θ,σ2m). A measurement from machine 1 has variance σ21 = 1,
and one from machine 2 has variance σ22 = 100. A machine is chosen by tossing a fair coin, giving
M = 1, 2 with equal probabilities. Thus Y = {(y,m) : y ∈ R,m ∈ {1, 2}}.
If we observe (y,m) = (0, 1), then clearly we can ignore the fact that we might have observed m = 2,
i.e., we should take S1 = {(y, 1) : y ∈ R} rather than S2 = {(y, 2) : y ∈ R} or S = Y.
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Comments on sampling theory inference

! We assume that yo is just one of many possible datasets y ∈ S that might have been generated
from f(y; θ), and the probability calculations are performed with respect to S.

! We choose S to ensure that the probability calculation is relevant to the data actually observed.
For example, if yo has n observations, we usually insist that every element of S also has n
observations.

! The repeated sampling principle ensures that (if we use an exact pivot) inferences are calibrated,
for example, a (1− α) confidence interval (L,U) satisfies

P(L < θ ≤ U) = 1− α,

for every θ ∈ Θ and every α ∈ (0, 1). Hence if such intervals are used infinitely often, then

– although any particular interval either does or does not contain θ,

– it was drawn from a population of intervals with error probability exactly α.

! Bayesians object that inferences should only be based on the dataset yo actually observed, so the
reference set S is irrelevant.

Example 25 What would the confidence intervals look like in Example 24? How would the image on
slide 42 change? What hypothetical repetitions form the reference sets?
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Bayesian inference

! Our observed data yo are assumed to be a realisation from a density f(y | θ).
! If we can summarise information about θ, separately from yo, in a prior density f(θ), then we

base all our uncertainty statements on the posterior density given by Bayes’ theorem,

f(θ | yo) = f(yo | θ)f(θ)∫
f(yo | θ)f(θ) dθ

.

! For example, if θp satisfies P(θ ≤ θp | yo) = p for any p ∈ (0, 1), we could give a (1− 2α)
posterior credible interval I1−2α = (θα, θ1−α) such that

P(θ ∈ I1−α | yo) = 1− 2α;

here θ is regarded as random and yo as fixed.

! A point estimate θ̃(yo) of θ is obtained by minimising a posterior expected loss, i.e.,

θ̃(yo) = argminθ̃E
{
L(θ, θ̃) | yo

}
= argminθ̃

∫
L(θ, θ̃)f(θ | yo) dθ,

where the loss function L(θ, θ̃) ≥ 0 measures the loss when θ is estimated by θ̃.

Example 26 Perform Bayesian inference based on Y1, . . . , Yn | θ iid∼ U(0, θ) with a Pareto(a, b) prior
for θ.
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Note to Example 26

! In situations like this, where the support of the density depends on a parameter, it is useful to
include an indicator function when writing down the density, viz

f(y | θ) = θ−1I(0 < y < θ), y ∈ R, θ > 0.

As a function of y for fixed θ, its support is the set (0, θ), but as a function of θ for fixed y, its
support is (y,∞). Sketch these to appreciate the difference.

! The prior density is f(θ) = aba/θa+1I(θ > b) for a, b > 0, and the joint density of the data is

f(y | θ) = f(y1, . . . , yn | θ) =
n∏

j=1

f(yj | θ) =
n∏

j=1

I(0 < yj < θ)θ−1 = θ−nI(0 < m < θ).

where m = max(y1, . . . , yn), so the posterior density is proportional to

f(θ | y) ∝ f(y1, . . . , yn | θ)f(θ) = θ−nI(0 < m < θ)
aba

θa+1
I(θ > b) ∝ θ−(A+1)I(θ > B),

where A = a+ n and B = max(m, b). There are two possibilities here: the prior gives a lower
bound b for θ, and if m < b then there is no reason to update this lower bound, but if m > b then
clearly θ > m > b, so the bound must be increased at least to m.

! The posterior density has support on (B,∞) and is proportional to θ−(A+1), so it is
Pareto(A = a+ n,B = max(y1, . . . , yn, b)). The p quantile of this distribution satisfies
p = 1− (B/θp)A, i.e., θp = B(1− p)−1/A, which depends on the data and prior; of course
0 < p < 1.

! To get a point estimate we might take loss function

L(θ̃, θ) = |θ̃ − θ| = (θ̃ − θ)I(θ̃ > θ) + (θ − θ̃)I(θ > θ̃),

and a standard computation shows that this is minimised at θ̃ = θ1/2 = B21/A.
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Comments on Bayesian inference

! Often Bayesian models are formulated using a judgement that some variables/observations are
exchangeable, as de Finetti theorems then imply that we can write

Y1, . . . , Yn | θ iid∼ f(y; θ), θ ∼ f(θ).

! In general, Bayesian inference

– requires the specification of a prior distribution on unknowns, separate from the data;

– implies that we regard prior information as equivalent to data, putting uncertainty and
variation on the same footing;

– reduces inference to computation of probabilities, so in principle is simple and direct.

! Objectively specifying prior ‘ignorance’ is problematic and can lead to paradoxes, especially in high
dimensions.

! (Approximate) Bayesian computation can be performed using

– conjugate prior distributions (exact computations in simple cases),

– integral approximations (e.g., Laplace’s method),

– deterministic methods (e.g., variational approximation),

– simulation, especially Markov chain Monte Carlo.
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Randomisation

! To compare how treatments affect a response, they are randomised to experimental units:

– treatments are clearly-defined procedures, one of which is applied to each unit;

– a unit is the smallest division of the raw material such that two different units might receive
two different treatments;

– the response is a well-defined variable measured for each unit-treatment combination.

! Examples are agricultural trials, industrial experiments, clinical trials, . . .

! The experiment is ‘under the control’ of the investigator, making strong inferences possible.

! Main goals of randomisation:

– avoidance of systematic error (eliminating bias);

– estimation of baseline variation (e.g., by use of replication and/or blocking);

– realistic statement of uncertainty of final conclusions;

– providing a basis for exact inferences using the randomisation distribution.
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Example: Shoe data

! Shoe wear in an paired comparison experiment in which materials A (expensive) and B (cheaper)
were randomly assigned to the soles of the left (L) or right (R) shoe of each of m = 10 boys.

! The m = 10 differences d1, . . . , dm have average d = 0.41.

Boy Material Difference
A B d

1 13.2 (L) 14.0 (R) 0.8
2 8.2 (L) 8.8 (R) 0.6
3 10.9 (R) 11.2 (L) 0.3
4 14.3 (L) 14.2 (R) –0.1
5 10.7 (R) 11.8 (L) 1.1
6 6.6 (L) 6.4 (R) –0.2
7 9.5 (L) 9.8 (R) 0.3
8 10.8 (L) 11.3 (R) 0.5
9 8.8 (R) 9.3 (L) 0.5
10 13.3 (L) 13.6 (R) 0.3
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Example: Shoe data II

! A unit is a foot, a treatment is the type of sole, and the response is the amount of wear.

! This is paired comparison experiment, as there are blocks of two similar units, each of which is
given one treatment at random, according to the scheme

Treatment for boy j Left foot Right foot
A lj rj
B θ + lj θ + rj

! We observe either (θ + lj, rj) or (lj , rj + θ) so the difference Dj of B and A for boy j is
θ + lj − rj or θ + rj − lj . These are equally likely, so we can write Dj = θ + Ijcj , where

– θ is the unknown (extra wear) effect of B compared to A,

– Ij = 1 if the left shoe of boy j has material B and otherwise equals −1, and

– cj = lj − rj is the unobserved baseline difference in wear between the left and right feet of boy
j.

! If we observe (θ + lj , rj) for boy j, then we cannot observe (lj , θ + rj), which is said to be
counterfactual.
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Example: Shoe data III

! There are 2m equally-likely treatment allocations, and the observed d is a realisation of the random
variable

D =
1

m

m∑

j=1

Dj =
1

m

m∑

j=1

θ + Ijcj = θ +
1

m

m∑

j=1

Ijcj ,

where Ij = ±1 with equal probabilities, so

E(Ij) = 0, var(Ij) = 1.

! Hence E(D) = θ and var(D) = m−2∑m
j=1 c

2
j , which is unknown because the cj are unknown, is

estimated by (exercise)

S2 =
1

m(m− 1)

m∑

j=1

(Dj −D)2.

! D and S2 can be computed from the observed data, so the standardized quantity Z = (D − θ)/S
is an approximate pivot.

! If there was no difference between B and A (i.e., θ = 0), then T = D/S would be symmetrically
distributed, as positive and negative values of D would be equally likely.
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Example: Shoe data IV

Randomization distribution of T = D/S for the shoes data, i.e., setting θ = 0, together with a t9
distribution. Left: histogram and rug for the values of T , with the t9 density overlaid; the observed
value is given by the vertical dotted line. Right: probability plot of the randomization distribution
against t9 quantiles.
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Comments

! Systematic error is reduced by randomisation,

– but if material A had by chance been allocated to all the left feet, then we might have
re-randomised;

– we could have used a design in which A appeared on left feet exactly 5 times.

! Baseline variation was reduced by blocking, i.e., using two treatments for each boy, and is
estimated by S2, based only on the observed values D1, . . . ,Dm.

! S2 also allows a statement of uncertainty for D and hence for estimates of θ.

! If θ = 0, then the observed value of D is highly unlikely: just 3 values of D exceed d = 0.41, so if
θ = 0 then exact calculation gives

P(D ≥ d) = 7/210
.
= 0.007,

which seems unlikely enough to suggest that θ > 0.

! Normal distribution theory suggests that Z
·∼ t9, and the QQ-plot shows that this would work well

even here. The symmetry induced by randomisation justifies the widespread use of normal errors in
designed experiments.
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Big picture summary

! Statistical inference involves (a family of) probability models from which observed data are
assumed to be drawn.

! These models express variation inherent in the data, but we also wish to express our uncertainty
about the underlying situation.

! Uncertainty is formulated using

– a repeated sampling (frequentist) approach, which invokes hypothetical repetitions of the
data-generating mechanism, or

– a Bayesian approach, which requires that ‘prior information’ on unknown quantities be
expressed as a probability distribution, or

– a randomisation approach, in which the model and hypothetical repetitions are controlled by
the investigator.

! The last is the strongest approach, but it is not always applicable.
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